Corrigé

septembre 7th, 2019

Category: Corrigé et Astuces

Exercice : Clic droit sur le corrigé

Tout le corrigé :

1) Exprimer Y = cos(x + 2π) – sin(π – x) + cos(π + x) – sin(-x) :

Tu vois quatre termes différents qu’il faut gérer en quatre étapes.

D’abord cos(x + 2π) :

Ajouter 2π à l’angle x, c’est faire un tour complet de cercle trigo et revenir à l’angle x.

trigonométrie tour complet cercle

Cela veut dire que le fait d’ajouter 2π, d’enlever 2&pPi;, ou des multiples de 2π (4π, 6π, etc) ne change à la valeur du cosinus (et du sinus).

On a donc comme formule : Pour tout x, cos(x + 2π) = cos(x).

Ensuite sin(π – x)

Dans les questions comme ça avec des π-x, des π+x, etc, il faut toujours se ramener un quart de cercle Nord-Est pour dessiner x. Ce quart Nord-Est représente le cos(x) et le sin(x).

trigonométrie quart nord est

J’attire ton attention sur une chose, tu vois cet angle x plus bas que haut, en dessous de π/4.
Il y a un trait horizontal qui fait la largeur en dessous de l’angle, c’est le cosinus en rouge.
Il y a un trait vertical qui fait la hauteur à gauche de l’angle, c’est le sinus en vert.
Les deux traits ont différentes longueurs ici.

Et comme l’angle est en haut à gauche, le sinus et le cosinus sont tous les deux positifs (indiqués par le signe +).

Maintenant, il faut dessiner π-x pour comparer ! C’est là que tu dois dessiner le cercle trigo avec x en haut à droite et le π-x.

pi moins x angle trigo

En haut à droite, tu retrouves l’angle x avec son cosinus rouge en largeur et son sinus vert ne hauteur.
Comme l’angle est à droite, le cosinus est positif (+).
Comme l’angle est au dessus de l’axe des abscisse, le sinus est positif (+).

Pour trouver l’emplacement π-x, tu vas tout à gauche puis tu remontes à l’envers pour enlever le x (du même écartement/angle) que le x à droite.

Là encore, il faut tracer le trait horizontal en dessous de l’angle. C’est la largeur cosinus(π-x) rouge.
Comme ce cosinus va vers la gauche de l’axe des ordonnées, il est négatif.

Là encore, tu peux tracer le trait vertical à côté de l’angle. C’est la hauteur sinus(π-x) vert. Comme ce sinus va au dessus de l’axe des abscisses, il est positif.

Il faut comparer les longueurs des traits cos(π-x) et sin(π-x) avec ceux de cos(x) et sin(x). Ces longueurs sont les valeurs !

On s’aperçoit que les traits des cosinus ont même longueur donc:
cos(π-x) = +cos(x) ou cos(π-x) = -cos(x).
On regarde les signes, l’un des cosinus est « moins-«  et l’autre est « plus+ ».
Du coup, cos(π-x) = -cos(x) car ils n’ont pas le même signe.

De plus, on s’aperçoit que les traits des sinus ont même longueur donc:
sin(π-x) = +sin(x) ou sin(π-x) = -sin(x).
On regarde les signes, les deux sinus sont « plus+ ».
Du coup, sin(π-x) = +sin(x) car ils sont de même signe.

Conclusion et Rédaction : D’après le cours, sin(π – x) = sin(x).

Puis cos(π + x)

Même méthode. On refait un cercle trigonométrique analogue au précédent. Cette fois, tu vas jusqu’à π à gauche et tu continues pour ajouter +x. Le sinus sera cette fois vers le bas car on repasse en dessous de l’axe des abscisses : il est donc négatif.

pi plus x trigonométrie

Il faut comparer les longueurs des traits cos(π+x) et sin(π+x) avec ceux de cos(x) et sin(x). Ces longueurs sont les valeurs !

On s’aperçoit que les traits des cosinus ont même longueur donc:
cos(π+x) = +cos(x) ou cos(π+x) = -cos(x).
On regarde les signes, l’un des cosinus est « moins-«  et l’autre est « plus+ ».
Du coup, cos(π+x) = -cos(x) car ils n’ont pas le même signe.

On s’aperçoit que les traits des sinus ont même longueur donc:
sin(π+x) = +sin(x) ou sin(π+x) = -sin(x).
On regarde les signes, l’un des sinus est « moins-«  et l’autre est « plus+ ».
Du coup, sin(π+x) = -sin(x) car ils n’ont pas le même signe.

Conclusion et Rédaction : D’après le cours, cos(π + x) = -cos(x).

Enfin sin(-x)

Dessine le cercle, c’est surtout la droite du cercle qui servira.

trigonométrie parité sinus et cosinus

Compare les cosinus de -x et x. Ils sont identiques car ils vont tous les deux vers la droite.
Compare les sinus de -x et x. Ils sont opposés car l’un va vers le haut et l’autre vers le bas.

Conclusion et Rédaction : D’après le cours, sin(-x) = -sin(x).

Rassemblons tout :

Rédaction :
Y = cos(x + 2π) – sin(π – x) + cos(π + x) – sin(-x)
= cos(x) – sin(x) + (-cos(x)) – (-sin(x)) (d’après ce qu’on a vu plus haut)
= cos(x) – sin(x) – cos(x) + sin(x)
= 0.

Donc Y = 0.

2) Exprimer Z = 2sin(x + 5π) + cos(x + π/2) + cos(x) – 3sin(x + π/2) :

Tout d’abord sin(x + 5π) :

Comme vu plus haut, il y a trop de π dans 5π. Comme la fonction sinus est périodique de période 2π, on peut enlever des 2π sans problème.

Rédaction :
sin(x + 5π)
= sin(x + 3π) (car sin est 2π-périodique)
= sin(x + 1π) (car sin est 2π-périodique)
= sin(π + x)
= -sin(x) (d’après le cours et vu dans la question 1)).

Ensuite cos(x + π/2) :

Celui-là n’est pas facile, c’est reparti pour le dessin d’un cercle trigonométrique avec l’angle x en haut à droite. Comme on ajoute π/2), tu dessineras l’angle x+π/2 un quart de tour plus loin (car π/2 c’est un quart de tour et π c’est un demi-tour).

angle associé pi sur deux plus x

Comparons maintenant le cos(x + π/2) avec cos(x) et sin(x).
Si tu regardes de près les longueurs, celle de cos(x + π/2) en rouge est égale à celle de sin(x) en vert (les petites longueurs).
Or, cos(x + π/2 est vers la gauche, il est dans les « moins-« . Et sin(x) est vers le haut, il est dans les « plus+ ».

Donc ils ne sont pas de même signe. Du coup :
cos(x + π/2) = -sin(x)

Comparons maintenant le sin(x + π/2) avec cos(x) et sin(x).
Si tu regardes de près les longueurs, celle de sin(x + π/2) en vert est égale à celle de cos(x) en rouge (les grandes longueurs).
Or, sin(x + π/2 est vers le haut, il est dans les « plus+ ». Et cos(x) est vers la gauche, il est dans les « plus+ ».

Donc ils sont de même signe. Du coup :
sin(x + π/2) = cos(x)

Conclusion et Rédaction : D’après le cours, cos(x + π/2) = -sin(x).

Enfin sin(x + π/2) :

C’est la situation précédente.

Rédaction : D’après le cours, sin(x + π/2) = cos(x).

Rassemblons tout :

Z = 2sin(x + 5π) + cos(x + π/2) + cos(x) – 3sin(x + π/2)
= 2(-sin(x)) + (-sin(x)) + cos(x) – 3cos(x) (d’après ce qu’on a vu précédemment)
= -3sin(x) – 2cos(x).

Donc Z = -3sin(x) – 2cos(x).

3) Démontrer que : (AB, AD) + (DA, DC) + (CD, CB) + (BC, BA) = 0 :

Déjà, tu peux voir qu’il y a des vecteurs opposés. Ce serait bien de retrouver les mêmes vecteurs partout. Par exemple transformons DA = –AD.

Rédaction :

En partant du membre de gauche :
(AB, AD) + (DA, DC) + (CD, CB) + (BC, BA)
= (AB, AD) + (-AD, –CD) + (CD, –BC) + (BC, –AB) (***)

Que faire avec les moins ?

Angles moins pi

Enlever un « moins- » à un vecteur, c’est prendre son opposé. La conséquence sur les angles est qu’on ajoute π car on fait un demi-tour supplémentaire en prenant l’opposé.

On voit sur le dessin que :
(u, –v) = (u, ->v) + π.
Ajoutons π à chaque fois qu’on enlève un « moins- » à un vecteur.

Rédaction :

(***)
= (AB, AD) + (AD, CD) + π + π + (CD, BC) + π + (BC, AB) + π
= (AB, AD) + (AD, CD) + (CD, BC) + (BC, AB) + 4π
= (AB, AD) + (AD, CD) + (CD, BC) + (BC, AB) + 0 (car les multiples de 2π font des angles nuls)
= (AB, CD) + (CD, BC) + (BC, AB) (avec la relation de Charles, on peut enlever les deux vecteurs AD qui se suivent car si tu vas de u vers v, puis de v vers w, c’est comme aller de u vers w)
= (AB, BC) + (BC, AB) (idem avec CD)
= (AB, AB) (idem avec AB)
= 0 (car il n’y a pas d’angle entre deux fois le même vecteur).

Bonne compréhension,
Sylvain Jeuland

Ecris le premier commentaire


Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *