Corrigé

décembre 16th, 2019

Category: Corrigé et Astuces

Exercice : Clic droit sur l’exercice

Tout le corrigé :

1) Pour calculer la mesure d’un principale d’un angle, l’idéal est de mettre 2π sous la forme d’une fraction avec le même dénominateur que notre angle.
2π = /4

La mesure principale doit se situer dans l’intervalle ]-π ; π]. Là aussi, l’idéal est de mette les π sous la forme d’une fraction avec le même dénominateur que notre angle.
]-π ; π] = ]-/4 ; /4].

Si l’angle de départ est au delà de l’intervalle ]-π ; π], il faut enlever les 2π jusqu’à l’atteindre.
Si l’angle de départ est en deçà de l’intervalle ]-π ; π], il faut ajouter les 2π jusqu’à l’atteindre.

Du coup, comme j’ai tout mis sur le même dénominateur et qu’il y a des π partout, on peut partir de -35 (pour -35Π/4), ajouter plusieurs fois 8 (pour /4) pour arriver dans l’intervalle ]-4 ; 4] (pour ]/4 ; /4]).

-35 + 8 = -27
-27 + 8 = -19
-19 + 8 = -19
-11 + 8 = -3
-3 appartient à ]-4 ; 4] donc la mesure principale est -3Π/4.

2) Pour résoudre sur [0 ; 2π] une équation du type
sin(x) = -√2/2,
il faut déjà arriver à la forme :
sin a = sin b.

Pour cela, regardons à quel angle correspond -√2/2 sur le cercle trigonométrique. Comme on parle de sinus, on s’occupe de la hauteur -√2/2.

Tout d’abord, -√2/2 correspond à environ -0,71 pour un cercle trigo qui a pour rayon 1.

Cercle trigonométrique angle moins pi sur quatre

Comme +√2/2 est le sinus de π/4,
la hauteur -√2/2 correspond à π/4.

On obtient donc : sin x = sin (π/4).

D’après le cours, si sin a = sin b, cela veut dire que :
a = b + 2π*k (k ∈ Z),
ou
a = π – b + 2π*k (k ∈ Z).

Dans notre cas :

x = π/4 + 2π*k (k ∈ Z),
ou
x = π – (-π/4) + 2π*k (k ∈ Z).

x = π/4 + 2π*k (k ∈ Z),
ou
x = /4 + 2π*k (k ∈ Z).

Ces deux égalités sont les solutions sur R, maintenant il nous les faut sur l’intervalle [0 ; 2π]. Pour cela, on prend la première des égalités et on parcourt les différentes de k. 0, -1, -2, etc, puis 1, 2, etc. On vérifie si les valeurs trouvées sont dans l’intervalle ou non.

Pour la première égalité :
k = 0 donne π/4 qui n’est pas dans l’intervalle car en dessous. On ne descendra pas dans les k négatifs. Non.

k = 1 donne π/4 + 2π soit /4. Celui-ci est bien dans l’intervalle [0 ; 2π] voulu car 8/4 = 2. OK.

k = 2 donne 15π/4, donc on dépasse l’intervalle par le dessus. Non et on s’arrête là.

Pour la seconde égalité :
k = 0 donne /4, on est bien dedans. OK.

k = -1 donne -3π/4, on est en dessous. Non.

k = 1 donne 13π/4, on est au dessus. Non et on s’arrête là.

Pour conclure, S = { /4 ; /4 }.

3-4-5-6) On a (u, v) = π/3
et (->u, ->w) = π/4.

3) (u, –v) :

Lorsqu’on a « un seul moins » devant un vecteur, cela renverse ce vecteur vers l’autre sens donc il se crée un demi-tour, soit un changement d’angle de π.

Angles moins pi

On a donc : (u, –v) = (u, v) + π
= π/3 + π
= /3
= /3 (mesure principale).

4) (u, 2u) :

On a les vecteurs u et u qui sont dans la même direction et le même sens. Donc l’angle est nul. Comme 2 est positif, cela ne change rien au sens de ->u.
Donc (u, 2u) = 0.

angle plat zero radian degre

5) (v, w) :

Comme on connaît u et v donc on peut faire Chasles entre v et w en plaçant u au milieu.

(v, w) = (v, u) + (u, w).

(v, u) se calcule en inversant le sens de
(u, v) car si on va de v vers u, c’est en sens contraire de u vers v.
Donc :
(v, u) = -(u, v).

angles opposés sens moins

(v, w) = (v, u) + (u, w)
= -(u, v) + (u, w)
= π/3 + π/4
= /12 + /12
= π/12

6) (-2w, -5u) :

Ici, on a deux « moins ». Comme vu dans le petit a), on peut enlever celui du vecteur gauche en ajoutant π à l’angle.
(-2w, -5u) = (2w, -5u) + π

On peut enlever celui du vecteur droit en ajoutant encore π à l’angle.
(2w, 5u) + π = (2w, 5u) + π + π

Les coefficients positifs ne changent pas la valeur de l’angle.
(2w, -5u) + π + π = (w, u) + 2π

L’ajout de 2π représente un tour complet de l’angle donc on peut enlever le 2π car cela ne change rien à sa valeur.

(w, u) + 2π = (w, u)

Comme vu précédemment, on peut échanger les vecteurs en prenant l’opposé car on change de sens donc :

(w, u)
= -(u, w)
= π/4

Du coup, (-2w, -5u) = π/4.

Ecris le premier commentaire


Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *